
EE 508

Lecture 22

Sensitivity Functions

   -  Comparison of Circuits

     -  Predistortion and Calibration



Theorem: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Theorem: If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances
( )T jω

Review  Correction from last time



Bilinear Property of Electrical Networks

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form

( )
( ) ( )

( ) ( )
0 1

0 1

N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks.

The bilinear relationship is  useful for

1. Checking for possible errors in an analysis

2. Pole sensitivity analysis

Review  from last time



Root Sensitivities
Consider expressing T(s) as a bilinear fraction in x
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Theorem:  If zi is any simple zero and/or pi is any 

simple pole of T(s), then
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and

Note:  Do not need to find expressions for the poles or the zeros to find the pole 

and zero sensitivities !

Note:  Do need the poles or zeros but they will generally be known by design

Note:  Will make minor modifications for extreme values for x (i.e. τ for op amps)



Root Sensitivities
Theorem:  If pi is any simple pole of T(s), then
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Proof (similar argument for the zeros)

( ) ( ) ( )0 1D s =D s +xD s
By definition of a pole,

( )iD p =0

( ) ( ) ( )i 0 i 1 iD p =D p +xD p 0= 



Root Sensitivities

Re-grouping, obtain

But term in brackets is derivative of D(pi) wrt pi, thus

( ) ( ) ( )i 0 i 1 iD p =D p +xD p 

Differentiating this expression implicitly WRT x, we obtain
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Root Sensitivities
( )

( )
1 ii

i

i

D pp

D px

p


= −

  
 

 

Finally, from the definition of sensitivity, 
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Observation:   Although the sensitivity expression is readily 

obtainable, direction information about the pole movement is 

obscured because the derivative is multiplied by the quantity pi 

which is often complex.  Usually will use either              

  or  

                                                          

which preserve direction information when working with pole or 

zero sensitivity analysis.

Root Sensitivities
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Root Sensitivities
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Summary:  Pole (or zero) locations due to component 

variations can be approximated with simple analytical 

calculations without obtaining parametric expressions for 

the poles (or zeros).

Ideal

Components
i ip p p

i
+ 

( ) ( ) ( )0 1D s D s x D s= +

where

and

Alternately,



C1

C2

R2R1

VIN

VOUT
K

Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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( ) ( )
0 1
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N s +xN s
T s =

D s +xD s

write in bilinear form

evaluate at τ=0
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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For equal R, equal C
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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Note this contains magnitude and direction information
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C
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Was this a lot of work for such a simple result?

What is the value of this result?  

Yes !    But it is parametric and still only took maybe 20 minutes

But it needs to be done only once for this structure

Can do for each of the elements

Understand how components affect performance of this circuit

Compare performance of different circuits for architecture selection

Could we have assumed equal R  equal C before calculation?  
No !   Analysis would not apply (not bilinear)

          Results would obscure effects of variations in individual components



Transfer Function Sensitivities
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Transfer Function Sensitivities
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If T(s) is expressed as

then
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Band-edge Sensitivities

The band edge of a filter is often of interest.  A closed-form expression for 

the band-edge of a filter may not be attainable and often the band-edges 

are distinct from the ω0 of the poles.  But the sensitivity of the band-edges 

to a parameter x is often of interest.
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Band-edge Sensitivities
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Theorem:  The sensitivity of the band-edge of a filter is given by the expression
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Band-edge Sensitivities
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Proof:



Band-edge Sensitivities
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Sensitivity Comparisons

Consider 5 second-order lowpass  filters 

      (all can realize same T(s) within a gain factor)

R L
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R3 R1 R2
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C2
VIN

VOUT

R0

R1
RQ

R4

R3
R2

C1 C2

Passive RLC +KRC

Bridged-T Feedback 

Two-Integrator Loop 

(a) (b)

(c) (d)



Sensitivity Comparisons

Consider 5 second-order lowpass  filters 

      (all can realize same T(s) within a gain factor)

-KRC Lowpass
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R
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(e)
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ω
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For all 5 structures, will have same transfer function within a gain factor
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b)   + KRC (a Sallen and Key filter)
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Case b1 : Equal R, Equal C
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Case b2 : Equal R, K=1
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d)    - KRC   (a Sallen and Key filter)
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Often  R1=R2=R3=R4=R, C1=C2=C
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Stay Safe and Stay Healthy !



End of Lecture 22
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